Siの陽極化成時におけるレーザ照射の効果

薄膜·表面物性研究室 大澤 修一 M063503 Shuichi Osawa

1. 目的

陽極化成で多孔質シリコン(PSi)を作製する場合には、正孔が重要な役割を果たすといわれている。そのため、n型Siを陽極化成する際、レーザなどの光源により基板表面に正孔を供給する必要がある。p型Siの場合は元々多数キャリアとして正孔が存在しているため、レーザなどを照射しなくてもPSiの作製は行える。だが、局所的に正孔を増加させた場合に変化が生じることが考えられる。本研究では、p型SiにHe-Neレーザを照射しながら陽極化成を行い、レーザ照射部分で測定されるフォトルミネッセンス(PL)への影響を調べた。

2. 実験

直径 100mm の p 型 Si (100) ウェーハー $(\rho = 6\sim 9~\Omega cm)$ から切り出した $1.0\times 2.0 cm^2$ の Si 基板の酸化膜を除去した後、片面に Al 膜を電極としてスパッタ蒸着した。電極面は酢酸ビニル系のプラスチックを融解塗布して保護した。陽極化成は、フッ酸エタノール混合溶液 $[HF(46w\%): C_2H_5OH=1:1]$ を用いて、暗闇で He-Ne レーザ(632nm)照射の下、電流密度は約 $1.0\times 1.0 cm^2$ の試料面に $5\sim 40$ mA で 20 分間通電した(Fig.1)。 PL は GaN 半導体レーザ(409nm)を励起源とし、光学式顕微鏡を用いて直径数十 μ m 程度の領域から観測した。

3. 結果および考察

Fig.2 は電流密度 5~40mA/cm²、化成時間 20 分で作製した PSi のレーザ照射部における PL スペクトルを表している。電流密度の増加 に伴い、発光ピークの PL 強度は増加し、化成 電流 30mA をピークに減少した。発光ピーク のエネルギーは低電流 (5~20mA) では、1.85 ~1.88eV であったが、化成電流 30mA で 1.78eV、40mAで 1.57eV と減少した。また、 30mA 以上の電流で作製した試料表面は、平 坦ではなく傷ついていた。これは電流が高す ぎたため、表面が電解研磨に近い状態になっ たと考えられる。逆に、化成電流 5mA で作製 した試料表面はレーザ照射部分が電解研磨さ れたように光沢があり、PL 発光はレーザ照射 部の周辺で観測された。照射域に電流が流れ ているとすると表面が平坦で、発光強度が強 い PSi は化成電流 20mA の時、約 300mA/cm²

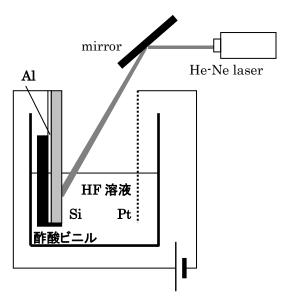


Fig.1 陽極化成装置

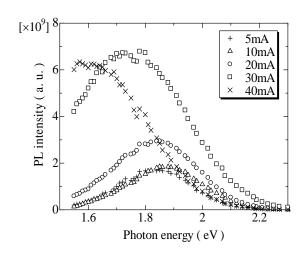


Fig.2 電流密度とPLスペクトル

Fig.3 は陽極化成時の照射レーザ光量を ND

に相当する。

フィルターを使用して変化した時の PL スペ クトルを表している。比較用にレーザ照射せ ず作製した試料からの PL スペクトルも載せ てある。作製条件は化成電流 20mA、化成時 間20分で行った。化成時における照射レーザ の光量を減少させるにつれ、発光ピークの強 度、エネルギー共に減少した(Table.1)。特に ND8で作製した PSiの PLは、レーザ照射せ ず作製した PSi の PL と同様にほとんど発光 を示さなかった。陽極化成時に照射するレー ザの光量を変化させることで、PSiの発光ピー クの強度とエネルギーをコントロールできる。 これらの結果を考察すると、レーザ照射に より基板表面の照射部分で電流の集中が起こ り、局所的に陽極化成反応が進んだと考えら れる。Fig.2 で見られた電流密度の増加に伴う PL 強度の増加は、照射部分における電流集中 により PSi 層が厚くなり Si 微結晶も増え、発 光強度が強くなったと考えられる。Fig.3の照 射レーザの光量を減少させるにつれ、発光強 度が減少したのは、照射部分の電流集中の効 果が弱まり陽極化成反応が緩やかになったた めと考えられる。実際化成中の反応槽内の水 素気泡は、レーザの光量を減少させるにつれ

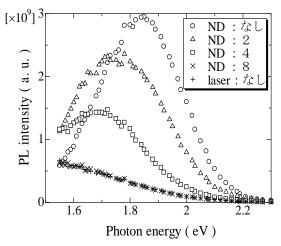


Fig.3 照射レーザの光量とPL

減少した。照射レーザの光量をコントロール することで、試料表面の発光を制御できることを示す。

Table.1 照射レーザの光量と発光ピーク

Laser intensity		Energy(eV)
100 %	ND 無し	1.85
50 %	ND2	1.78
25 %	ND4	1.70
12.5 %	ND8	1.56
0 %	laser 無し	1.55

4. まとめ

p型 Si にレーザ照射を行いながら陽極化成を行ない、PL スペクトルへの影響を調べた。レーザ照射部では電流集中がおこり、非照射部に比べ陽極化成反応が促進した。化成時の電流を増加させるにつれ、発光強度は増加したが、30mA 以上で表面が傷ついた。照射レーザの光量を減少させると電流集中が弱まりPL 発光も弱くなった。光量を8分の1にするとレーザを照射しない場合と比較してほとんど変化がなかった。