最新版はこちら。 突っ込みは各日付の BBS エントリのほか、 メール (nakano@st.seikei.ac.jp) や フォーム からどうぞ。 なおスパム除けのため、BBS 機能には 緩い認証を入れて います。 検索エンジンから来た方は、エンジンの方のキャッシュを見るか、 下の簡易検索を試してみてください。
|
Namazu for hns による簡易全文検索 詳しくは 詳細指定/ヘルプを参照して下さい |
|||||||||||||||||||||||||||||||||||||||||||||
We report a method of estimating what percentage of people who cited a paper had actually read it. The method is based on a stochastic modeling of the citation process that explains empirical studies of misprint distributions in citations (which we show follows a Zipf law). Our estimate is only about 20% of citers read the originalわはははは。確かによくある気がしていたが、 ミスの伝播を調べるというアイディアは面白い。
We present a method for the extraction of the height?height correlation function of random surfaces from the average intensity of image speckles. The setup of a Fourier transforming and imaging system with a variable aperture is used for both the theoretical analysis and experimental performances. Based on the analytical expression of the image intensity, an algorithm is developed to formulate numerically the intensity data versus the aperture radius into the pair of Bessel?Fourier transform and the inversion, from which the height?height correlation function is reconstructed. Three samples of Gaussian correlation are used for the experimental demonstration. The extracted height?height correlation function and the random surface parameters obtained thereby conform with those obtained by atomic force microscopy.
To investigate the impact of damp heat treatments on the electronic and chemical structure of Cu(In,Ga)(S,Se)2-based thin film solar cells, we have performed a detailed soft x-ray emission study of the ZnO/CuIn(S,Se)2 and ZnO/CdS/CuIn(S,Se)2 interfaces. By comparing the sulfur L2,3 emission spectra of pristine and damp-heat treated samples, we find a sulfate formation at the ZnO/CuIn(S,Se)2 and the ZnO/CdS interface. The intensity behavior as a function of ZnO film thickness further reveals a diffusion of sulfur atoms into the ZnO film, leading to the formation of zinc sulfate in the ZnO window layer of damp-heat-treated Cu(In,Ga)(S,Se)2-based solar cells.