¤Ê¤«¤Î¤Ë¤Ã¤­

ºÇ¿·ÈǤϤ³¤Á¤é¡£ Æͤùþ¤ß¤Ï³ÆÆüÉդΠBBS ¥¨¥ó¥È¥ê¤Î¤Û¤«¡¢ ¥á¡¼¥ë (nakano@st.seikei.ac.jp) ¤ä ¥Õ¥©¡¼¥à ¤«¤é¤É¤¦¤¾¡£ ¤Ê¤ª¥¹¥Ñ¥à½ü¤±¤Î¤¿¤á¡¢BBS µ¡Ç½¤Ë¤Ï ´Ë¤¤Ç§¾Ú¤òÆþ¤ì¤Æ ¤¤¤Þ¤¹¡£ ¸¡º÷¥¨¥ó¥¸¥ó¤«¤éÍ褿Êý¤Ï¡¢¥¨¥ó¥¸¥ó¤ÎÊý¤Î¥­¥ã¥Ã¥·¥å¤ò¸«¤ë¤«¡¢ ²¼¤Î´Ê°×¸¡º÷¤ò»î¤·¤Æ¤ß¤Æ¤¯¤À¤µ¤¤¡£


hns - Æüµ­¼«Æ°À¸À®¥·¥¹¥Æ¥à - Version 2.19.5

Àè·î 2003ǯ01·î Íè·î
Æü ·î ²Ð ¿å ÌÚ ¶â ÅÚ
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
Namazu for hns ¤Ë¤è¤ë´Ê°×Á´Ê¸¸¡º÷
¾Ü¤·¤¯¤Ï ¾ÜºÙ»ØÄê/¥Ø¥ë¥×¤ò»²¾È¤·¤Æ²¼¤µ¤¤
¸¡º÷¼°:

2003ǯ01·î01Æü(¿å) [nǯÆüµ­]

#1 ²ìÀµ

#2 [proverb] ¡Ø³¤ÊդΥ«¥Õ¥«¡Ù¤è¤ê¡¢ÂçÅ礵¤ó¤ÎÂæ»ì

²¼´¬ p.25¡£
¡Ö...Èà½÷¤Ï¤ª¤½¤é¤¯°ÕÌ£¤äÏÀÍý¤È¤¤¤Ã¤¿¾éĹ¤Ê¼ê³¤­¤ò¥Ñ¥¹¤·¤Æ¡¢ ¤½¤³¤Ë¤¢¤ë¤Ù¤­Àµ¤·¤¤¤³¤È¤Ð¤ò¼ê¤ËÆþ¤ì¤ë¤³¤È¤¬¤Ç¤­¤¿¤ó¤À¡£ (Ãæά) ·Ý½Ñ²È¤È¤Ï¡¢¾éĹÀ­¤ò²óÈò¤¹¤ë»ñ³Ê¤ò»ý¤Ä¿Í¡¹¤Î¤³¤È¤À¡×

#3 [book] ¡Ø³¤ÊդΥ«¥Õ¥«¡Ù¼¾å½Õ¼ù ¿·Ä¬¼Ò

ÆÉλ¡£Çã¤Ã¤Æ¤«¤é¤¨¤é¤¯Ä¹¤¤¤³¤ÈÊü¤Ã¤Æ¤¢¤Ã¤¿¤Î¤À¤¬¡¢ ¤­¤Ã¤È¥³¥ó¥Ç¥£¥·¥ç¥ó¤¬À°¤Ã¤Æ¤¤¤Ê¤¤¤ÈÂÌÌܤÀ¤Ã¤¿¤ó¤À¤í¤¦¡£ ¤Ò¤µ¤Ó¤µ¤Î¥Ø¥Ó¥£µé¤À¤Ã¤¿¡£¥Û¥·¥Î¤¯¤óºÇ¹â¡£

#4 ¥ì¥ó¥º¤¬¤ï¤«¤ëËÜ

Ãø¼Ô¤Î±ÊÅĤµ¤ó¤«¤é¥á¡¼¥ë¤ò¤¤¤¿¤À¤¤¤¿¡£ p.128 ¤Î³Ñ¦È¡¢¦È'¤Ï¡¢¤½¤ì¤¾¤ì¸÷¼´¤«¤éÇËÀþ¤Þ¤Ç¤Î³ÑÅÙ¤Îͳ¡£ Ëܤϳع»¤ËÃÖ¤¤¤Æ¤­¤Á¤ã¤Ã¤¿¤Î¤Ç¤Þ¤¿¸«¤Æ¤ß¤è¤¦¡£
¥³¥á¥ó¥È [Á´ÉôÆɤà/Åê¹Æ¤¹¤ë]

2003ǯ01·î02Æü(ÌÚ) [nǯÆüµ­]

#1 ¿²Àµ·î

Ë夬µ¢¤Ã¤Æ¤­¤Æ¿©¤¤Êª¤ò¶¡µë¤·¤Æ¤¯¤ì¤¿¤Î¤Ç¡¢ ¤º¤Ã¤ÈßÙßý¤Ç¥´¥í¥´¥í¡£ ¥Ë¥å¡¼¥¤¥ä¡¼¥³¥ó¥µ¡¼¥ÈÄ°¤¤¤¿¤ê¶ÚÆùÈÖÉÕį¤á¤¿¤ê¡¢ ¥Þ¥ó£Õ¤Î»î¹ç¸«¤¿¤ê¤·¤Ä¤Ä¥Þ¥ó¥¬¤ä¤éËܤä¤é¡£ À¸³è»þ´ÖÂÓ¤¬ GMT ¤Ë¤Ê¤Ã¤Æ¤¤¤ë¤Ê¤¢¡£

#2 ǯ²ì¾õÊÖ¿®

À㤬¹ß¤Ã¤Æ¤¤¤¿¤Î¤ÇÊ⤤¤Æ 5 ʬ¤Î¤È¤³¤í¤Þ¤Ç¼Ö¤Ç½Ð¤·¤Ë¹Ô¤Ã¤¿¤ê¡£

#3 [book] ¡Ø¿Ê²½ÏÀ¤È¤¤¤¦¹Í¤¨Êý¡Ùº´ÁÒ Åý ¹ÖÃ̼Ҹ½Âå¿·½ñ

¤³¤ì¤â¤º¤¤¤Ö¤óÁ°¤ËÇã¤Ã¤ÆÀѤóÆɤˤʤäƤ¤¤¿ËÜ¡£ Íýͳ¤ÏʸÂΤ¬¤¤¤Þ¤¤¤Á¼«Ê¬¤Ë¹ç¤ï¤Ê¤«¤Ã¤¿¤¿¤á¡£ ³Æ¾Ï¤Ç¼¾å½Õ¼ù¤ò°úÍѤ·¤Æ¤¤¤¿¤ê¡¢ ¼«¿È¤Î¼¾å½Õ¼ù¤Ø¤Î·¹Åݤ֤ê¤ò½Ò¤Ù¤Æ¤¤¤¿¤ê¤¹¤ë¤À¤±¤¢¤ê¡¢ ʸÂΤâ¤Á¤ç¤Ã¤È¤½¤Á¤éÊýÌ̤ÎÌ£ÉÕ¤±¤¬¤·¤Æ¤¢¤ë *1 ¤Î¤À¤¬¡¢¤¢¤Þ¤êÀ®¸ù¤·¤Æ¤¤¤Ê¤¤¡¢¤È¤¤¤¦¤Î¤¬¸Ä¿ÍŪ°õ¾Ý¡£

¤·¤«¤·ÆâÍƤÏÈ´·²¤Ë¤ª¤â¤·¤í¤¤¡£ Ãæ¿´¤Ï¥¿¥¤¥È¥ëÄ̤ê¿Ê²½ÏÀ¤Ç¡¢ ¤Þ¤ºÂè°ì¾Ï¤Ç¥À¡¼¥¦¥£¥ó°Ê¹ß¤Î¿Ê²½ÏÀ¤ÎÎò»Ë¤ò³µ´Ñ¡£ ³¤¯Æó¾Ï¤¬¤³¤ÎËܤÎÃæ¿´¤Ç¡¢¤½¤ì¤¾¤ìÀ¸Êª³Ø¤Ë¤è¤Ã¤Æ¿Í´Ö¤òµ­½Ò¤¹¤ë»î¤ß¡¢ ¾ðÊó¤È¤¤¤¦´ÑÅÀ¤«¤éÀ¸Êª³Ø¤òɾ²Á¤·¤Ê¤ª¤¹»î¤ß¤¬¾Ò²ð¤µ¤ì¤Æ¤¤¤ë¡£ ¤½¤ì¤¾¤ì¿Íʸ²Ê³Ø¡¢¾ðÊó²Ê³Ø¤ÈÀ¸Êª³Ø¤È¤Î¶­³¦Îΰè¤Ë¤Ê¤ë¡£ ¸ÄÂΡ¦¼ï¡¦½¸ÃÄ¡¦¥²¥Î¥à¤È¤¤¤Ã¤¿ entity ¤¬¤É¤Î¤è¤¦¤Ë¾ðÊó¤ò±¿¤Ö¤«¡¢ ¿Ê²½¤·¤Æ¤¤¤¯¤«¡£ ´ØÏ¢¤¹¤ë»Å»ö¤ò¤·¤Æ¤¤¤ë¿Í¤Ï¤¤¤í¤¤¤í¤Ê¼¨º¶¤ò¼õ¤±¤ë¤Î¤Ç¤Ï¤Ê¤«¤í¤¦¤«¡£

¤µ¤é¤ËºÇ¸å¤ÎÆó¾Ï¤Ç¤Ï¡¢¿Í´Ö¤òµ­½Ò¤¹¤ë²Ê³Ø¤¬¡¢ ¿ÍÎà¤Î°Õ»×·èÄê¤Ë¤É¤Î¤è¤¦¤Ë¤«¤«¤ï¤Ã¤Æ¤¤¤¯¤Ù¤­¤«¡¢ ¤¬µÄÏÀ¤µ¤ì¤Æ¤¤¤ë¡£ ɬ¤º¤·¤â¤³¤³¤Ç¤Ï¡Ö¿Ê²½¡×¤¬¼çÍפʥ­¡¼¥ï¡¼¥É¤Ë¤Ê¤ë¤ï¤±¤Ç¤Ï¤Ê¤¤¤¬¡¢ ²Ê³Ø¤È¼Ò²ñ¤Î´Ø¤ï¤ê¹ç¤¤¤ò¹Í¤¨¤Æ¤¤¤ë¿Í¤ÏɬÆɤȻפ¦¡£

»²¹Íʸ¸¥¤Î¥ê¥¹¥È¤âÀ°¤Ã¤Æ¤¤¤ë¡£ Ãø¼Ô¤Ï¤â¤È¤â¤ÈµþÂç¤Ç¥µ¥ë³Ø¤ò½¤¤á¤Æ¤¤¤¿Êý¤é¤·¤¤¤¬¡¢ À¸Êª³Ø¤Ë¸Â¤é¤º¡¢²Ê³Ø¡¦Å¯³Ø´Þ¤á¡¢¤Þ¤µ¤ËÇîÍ÷¶¯µ­¡£ ¤Á¤ç¤Ã¤È¼è¤Ã¤«¤«¤ê¤Ï°­¤¤¤·¡¢ ÆâÍƤâÊ¿°×¤Ç¤Ï¤Ê¤¤¤±¤ì¤É¡¢¶¯¤¯¤ª´«¤á¡£ ¤â¤Ã¤ÈÁ᤯Æɤá¤ÐÎɤ«¤Ã¤¿¡£
*1: Î㤨¤Ð°ì¿Í¾Î¤¬¡Ö¤Ü¤¯¡×¤Ë¤Ê¤Ã¤Æ¤¤¤¿¤ê¡£

#4 °ú¤­¼è¤ê¼êÊ罸´ØÏ¢

±þÊç¥Þ¡¼¥¯¤ò¤Ä¤±¤ë¤³¤È¤Ë¤·¤Þ¤·¤¿¡£

¡÷ ¼êÊü¤·¤Á¤ã¥À¥á:

¤Þ¤¢Ê¸¸Ë¤À¤· :-)

¡÷ ¤È¤Æ¤âÍߤ·¤¤:

º£¤Î¤È¤³¤í̵¶¥Áè¤Ç¤¹ :-)

#5 ÈÕÈÓ

¥«¥ì¡¼¡£

#6 ¥Ü¥­¥ã¥Ö¥éÅ·¹ñ

¸«¤¿¡£
¥³¥á¥ó¥È [Á´ÉôÆɤà/Åê¹Æ¤¹¤ë]

2003ǯ01·î03Æü(¶â) [nǯÆüµ­]

#1 [book] ¡Ø¥½Ï¢Äë¹ñºÆ·ú¡Ù¥¯¥é¥ó¥·¡¼¡¦¥Ô¥Á¥§¥Ë¥Ã¥¯ Éú¸«°ÒÈÙ Ìõ ¿·Ä¬Ê¸¸Ë

¤³¤ì¤âÅÓÃæ¤Þ¤ÇÆɤó¤ÇÁêÅöŤ¤»öÊü¤Ã¤Æ¤¢¤Ã¤¿¡£ ¤¤¤Ä¤â¤Î¥¯¥é¥ó¥·¡¼Åª¥Þ¥Ã¥Á¥çÏᣠËÝÌõ¤âñ½ã¤Ê¸íÊÑ´¹¤¬»Ä¤Ã¤Æ¤¿¤ê¡¢ ¤¢¤Þ¤ê½ÐÍ褬¤¤¤¤¤È¤Ï»×¤¨¤Ê¤¤¡£ ¤â¤¦¥¯¥é¥ó¥·¡¼¤Ï¤ä¤á¤ë¤«¤Ê¡£ ¤Á¤ç¤¦¤Éʸ½Õ¤«¤é¿·Ä¬¤ËÊѤï¤Ã¤¿º¢¤ËÌÌÇò¤¯¤Ê¤¯¤Ê¤Ã¤¿µ¤¤¬¤¹¤ë¡£

#2 ³°½Ð

±«Àã¤ÇÌÌÅݤ¯¤µ¤«¤Ã¤¿¤Î¤À¤¬¡¢ Àµ·î±ü¤µ¤ó¤Î¼Â²È¤Ëµ¢¤Ã¤Æ¤¤¤ë·»¤Î²È¤Ø¡¢ »Ä¤µ¤ì¤Æ¤¤¤ëÇ­¤ÎÍͻҤò¸«¤Ë¡£ ÆäËÌäÂê¤Ê¤µ¤²¡£¥È¥¤¥ì½èÍý¤È°û¤ß¿å¤Î¸ò´¹¡£ ¤½¤Î¤Þ¤ÞÅż֤˾è¤Ã¤Æ¤Á¤é¤Ã¤È³Ø¹»¤Ø¡£

#3 [labo] ¥¹¥Æ¡¼¥¸¥³¥ó¥È¥í¡¼¥é

·ü°Æ¤À¤±¡£

¡÷ ¥Ï¥ó¥ÀÉÕ¤±:

ÃÇÀþ ¤·¤Æ¤¿¤È¤³¤ò¥Ï¥ó¥ÀÉÕ¤±¡£ ¤³¤ÆÂ椬¤¤¤Ä¤â¤Î¤È¤³¤í¤Ë̵¤¤¤Î¤Ï¤Ê¤ó¤Ç¤¸¤ã¡£ ÁȤßÉÕ¤± ¤Î»þ¤ÎÏ»³Ñ¥ì¥ó¥Á¥»¥Ã¥È¤È¤¤¤¤¡¢ºÇ¶á¤³¤¦¤¤¤¦¤³¤È¤¬Â¿¤¤¤Ê¤¢¡£¤Ö¤Ä¤Ö¤Ä¡£

¥³¥Í¥¯¥¿¤È¥±¡¼¥Ö¥ë¤Ï¡¢¤È¤ê¤¢¤¨¤º¥»¥í¥Æ¡¼¥×¤ÇÊ䶯¡£ ¥Ó¥Ë¡¼¥ë¥Æ¡¼¥×¤âÁ°¤ËÇã¤Ã¤¿¤ä¤Ä¤¬¤¢¤Ã¤¿¤Ï¤º¤Ê¤Î¤À¤¬¡£ ºÇ½ªÅª¤Ë¤Ï¥³¥Í¥¯¥¿¤´¤È¸ò´¹¤·¤¿¤¤¤±¤É¡¢ ¤½¤ì¤Ï ¥ê¥ß¥Ã¥È¥»¥ó¥µ¤Î·ï ¤Î¸«Ä̤·¤¬ÉÕ¤¤¤Æ¤«¤é¡£

¡÷ minicom ÄÌ¿®:

¥¹¥Æ¡¼¥¸¤ÏÌäÂê¤Ê¤¯Æ°ºî¡£ ¥Ð¥Ã¥¯¥é¥Ã¥·¥åʬ¤ÎÌÌÅݤޤǤϸ«¤Æ¤¯¤ì¤Ê¤¤¤è¤¦¤Ê¤Î¤Ç¡¢ ¥×¥í¥°¥é¥à¦¤Ç¤ä¤é¤Ê¤¤¤È¥À¥á¤«¡£ ¥Ñ¥ë¥¹¿ô¤È°ÜÆ°µ÷Î¥¤Î´Ø·¸¤Ë¤Ä¤¤¤Æ¤Ï¡¢ ¥Í¥¸¤Î¥Ô¥Ã¥Á¤È¥â¡¼¥¿¤Îµ¬³Ê¤ò¶µ¤¨¤Æ¤¯¤ì¤ë¤è¤¦Â綶¤µ¤ó¤ËÍê¤ó¤Ç¤¢¤ë¤Î¤Ç¡¢ ¤½¤ì¤¬ÅþÃ夷¤Æ¤«¤é¡£

#4 [book] matlab ËÜ

matlab ¤Ï XPS ÁõÃÖ¤ËÉí°¤Î²òÀÏ¥½¥Õ¥È¤Ë»È¤ï¤ì¤Æ¤¿¤³¤È¤â¤¢¤Ã¤Æ¡¢ ÌܤˤĤ¤¤¿Ëܤò¤Ç¤­¤ë¤À¤±Ç㤦¤è¤¦¤Ë¤·¤Æ¤­¤Þ¤·¤¿¡£ ¤È¤ê¤¢¤¨¤º°Ê²¼¡¢¼ê¸µ¤Ë¤¢¤ëËܤˤĤ¤¤Æ¤Î¥ì¥Ó¥å¡¼¡£ ¸Ä¿ÍŪ¤Ë¤Ï½¨ÏÂ¥·¥¹¥Æ¥à¤«¤é½Ð¤Æ¤¤¤ëËܤ¬Èæ³ÓŪÎɤ¤µ¤¤¬¤·¤Æ¤¤¤Þ¤¹¡£

¤¿¤À¤·¡¢ÉÕ°¤Î±Ñʸ¥Þ¥Ë¥å¥¢¥ë¤â¤«¤Ê¤ê¤Ç¤­¤¬Îɤ¯¡¢ ·ë¶É¤³¤¤¤Ä¤¬°ìÈÖÌò¤ËΩ¤Ä¤³¤È¤â¿¤¤¤Ç¤¹¤Í¡£ ¼«Ê¬¤Ç MATLAB »È¤Ã¤Æ³¨¤ò½ñ¤¤¤¿¤È¤­¤Ï¤½¤¦¤Ç¤·¤¿¡£

¡÷ MATLAB ¤ÈÍøÍѤμºÝ:

Ëͤ⤳¤ÎËܤòºÇ½é¤ËÇ㤤¤Þ¤·¤¿¤¬¡¢ ½é´ü¤Ë½Ð¤¿¤³¤È¤â¤¢¤Ã¤Æ¤É¤Ã¤Á¤«¤È¤¤¤¦¤È overview Ū¤ÊÀ­³Ê¤¬¶¯¤¤¡£ ¼ÂºÝ¤Ë»È¤¤½Ð¤¹¤È¤¢¤Þ¤êÌò¤ËΩ¤¿¤Ê¤¤¤«¤â¡£

¡÷ MATLAB ¥×¥í¥°¥é¥ß¥ó¥°¥Ö¥Ã¥¯:

º£²ó¤Î octave ËܤÈÈϰϤ¬¥«¥Ö¤ëËÜ¡£Îɤ¯½ñ¤±¤Æ¤¤¤ë¤È»×¤¤¤Þ¤¹¡£ ¤¿¤À .* ¤È¤« .^ ¤È¤«¤Ë¤Ä¤¤¤Æ¤Ï¤ä¤Ã¤Ñ¤ê¤¢¤ó¤Þ¤ê½ñ¤¤¤Æ¤Ê¤¤ (¥³¥Þ¥ó¥É°ìÍ÷¤Ë¤ÏºÜ¤Ã¤Æ¤ë¤±¤É)¡£

¡÷ MATLAB ³èÍѥ֥å¯:

Æͤùþ¤ó¤À»È¤¤Êý¤ò¤·¤¿¤¤¿Í¸þ¤±¡£ MEX ¤ÎÏäȤ«¤â¾Ü¤·¤¯ºÜ¤Ã¤Æ¤¤¤Þ¤¹¡£

¡÷ MATLAB ¥Ï¥ó¥É¥Ö¥Ã¥¯:

¤³¤ì¤â»ý¤Ã¤Æ¤¿¤Ï¤º¤Ê¤ó¤À¤±¤É¡¢¤¤¤Þ¸«Åö¤¿¤é¤Ê¤¤¡£ ¤Ç¤âÎɤ¤ËܤÀ¤Ã¤¿µ­²±¤¬¤¢¤ê¤Þ¤¹¡£ ¿ôÃÍ·×»»¤ÎÃ챤ò°ìÄ̤ê»ý¤Ã¤Æ¤¤¤ë¿Í¤Ï¡¢ ¤³¤ÎËܤ«¤é¤Ï¤¸¤á¤ë¤È¤¤¤¤¤È»×¤¤¤Þ¤¹¡£

¡÷ MATLAB ¿ôÃͲòÀÏ:

¼«Ê¬¤¬²¿¤é¤«¤ÎÍÑÅÓ¤Ë MATLAB ¤ò»È¤¤¤¿¤¤¡¢ ¤È¤¤¤¦¾ì¹ç¤Î¥ê¥Õ¥¡¥ì¥ó¥¹¤Ë¤Ï¤¢¤Þ¤ê¸þ¤¤¤Æ¤Ê¤¤¡£ ¤à¤·¤í¹ÖµÁ¤Î¥Í¥¿ËܤȤ·¤Æ¤è¤µ¤²¡£ ÌõËܤǤ¹¤¬¡¢Ìõ¼Ô¤¬ÂçÀª¤Ç¡¢ËÝÌõ¤Î¼Á¤Î¤Ð¤é¤Ä¤­¤¬Â礭¤¤¡£

¡÷ ʪÍý¹©³Ø·Ï¤Î¥·¥ß¥å¥ì¡¼¥·¥ç¥óÆþÌç:

¤³¤ì¤â¤Ê¤¼¤«»ý¤Ã¤Æ¤¤¤ë (¤à¤Á¤ã¤¯¤Á¤ã¹â¤«¤Ã¤¿) ¤±¤É¡¢ ¤³¤ì¤Ï Symbolic Math toolbox (+Maple) ¤ä PDEase toolbox ¤ò»ý¤Ã¤Æ¤¤¤Ê¤¤¤È°ÕÌ£¤¬¤Ê¤¤ËܤǤ·¤¿¡£

¡÷ ¤Á¤Ê¤ß¤Ë:

¤¤¤º¤ì¤â octave ¤ò»È¤¦Ìò¤Ë¤Ï¤¢¤Þ¤êΩ¤¿¤Ê¤¤¤è¤¦¤Ê¡£ octave ¤Ï·ë¶É info ¤òÆɤà¤Î¤¬°ìÈÖ¤¤¤¤¤È»×¤¤¤Þ¤¹¡£ ÆüËܸìÌõ¤¬ ascii ¤¢¤¿¤ê¤«¤é½Ð¤Ê¤¤¤«¤Ê¤¢¡£
¥³¥á¥ó¥È [Á´ÉôÆɤà/Åê¹Æ¤¹¤ë]

2003ǯ01·î04Æü(ÅÚ) [nǯÆüµ­]

#1 ±«

¥Ð¥¹¤¬Íè¤Ê¤¯¤Æ³Ø¹»¡ÁµÈ¾Í»û¡¢¹ñʬ»û¡Á¼«Âð¤òÊ⤭¡£ ¿¾¯¤Ï±¿Æ°ÉÔ­¤Î²ò¾Ã¤Ë¤Ê¤Ã¤¿¤À¤í¤¦¤«¡£

#2 [debian] DSA-221 mhonarc

surf ¤Ç¹¹¿·¤µ¤ì¤Ê¤¤¤Î¤ÇÊѤÀ¤Ê¤È»×¤Ã¤¿¤é¡¢ disk crash ¤Î»þ¤ËÆþ¤ì˺¤ì¤Æ¤¿¤é¤·¤¤¡£¤ä¤ì¤ä¤ì¡£

#3 [labo] ¥¹¥Æ¡¼¥¸¥³¥ó¥È¥í¡¼¥éÀ©¸æ

Serial-Programming-HOWTO ¤È¤« miniterm.c ¤È¤«¤òį¤á¤Ê¤¬¤éÇùÁ³¤È»×¹ÍÃæ¡£ ´ðËÜŪ¤Ë¤Ï ¥«¥Î¥Ë¥«¥ë¤ÊÆþ½ÐÎÏ ¤Ç¤¤¤¤¤Î¤«¤Ê¡£ ¤¢¤È¤Ï Q: ¥³¥Þ¥ó¥É¤ËÂФ¹¤ë reply ¤ò parse ¤¹¤ë¥ë¡¼¥Á¥ó¤òºî¤ì¤Ð¤À¤¤¤¿¤¤Îɤµ¤½¤¦¤À¡£

¡÷ ¤Á¤Ê¤ß¤Ë:

miniterm.c ¤Ïû¤¤¤Î¤À¤±¤É·ë¹½¤ª¤â¤·¤í¤¤¡£ fork() ¤·¤Æ¿Æ¤¬ serial input¢ªstdout¡¢»Ò¤¬ stdin¢ªserial output ¤òô¤¦¤è¤¦¤Ë¤Ê¤Ã¤Æ¤¤¤ë¤Î¤À¤¬¡¢ fork() ¤ÎÊÖ¤êÃÍ¤Ç switch¡Ácase ¤¹¤ë¤ä¤êÊý¤È¤«¡¢ ÆÃÄê¤Îʸ»ú¤¬Æþ¤ë¤È»Ò¤¬¿Æ¤Ë¥·¥°¥Ê¥ë¤òÁ÷¤Ã¤Æ½ªÎ»¤¹¤ëÍͻҤȤ«¡¢ ¿Æ¤¬¥·¥°¥Ê¥ë¥Ï¥ó¥É¥é¤òÅÐÏ¿¤·¤Æ½èÍý¤ËÆþ¤ê¡¢»Ò¤ò wait ¤·¤Æ¤«¤é½ªÎ»¤¹¤ëÍͻҤȤ«¡£ ¤ª¤½¤é¤¯¤³¤Î¼ê¤Î¥×¥í¥°¥é¥à¤ÎÄêÀפʤΤÀ¤í¤¦¤¬¡¢ÊÙ¶¯¤Ë¤Ê¤ë¡£

¡÷ ¤Þ¤¿Ëöüʸ»ú:

 const char QCMD[] = "Q:\r";
  :
 write(fd, QCMD, sizeof(QCMD));
¤Î¤è¤¦¤Ë¤·¤¿¤È¤³¤í¡¢·ë²Ì¤Ï¤Á¤ã¤ó¤ÈÊ֤äƤ¯¤ë¤Î¤À¤±¤É¡¢ ½ªÎ»¸å¤Ë¥³¥ó¥È¥í¡¼¥é¤¬ Îã¤Î HOST/MANUAL ¤¬¸ú¤«¤Ê¤¤¾õÂÖ ¤Ë¤Ê¤Ã¤¿¡£sizeof(QCMD) ¤Ï (¤¢¤¿¤ê¤Þ¤¨¤À¤±¤É) 4 ¤Ê¤Î¤Ç¡¢ Ëöü¤Î \0 ¤â write ¤·¤Á¤ã¤Ã¤Æ¤ë¤¿¤á¤é¤·¤¤¡£
 write(fd, QCMD, sizeof(QCMD)-1);
¤Ë¤·¤¿¤éÌäÂê¤Ê¤¯¤¤¤¯¤è¤¦¤Ë¤Ê¤Ã¤¿¤±¤É¡¢Æ¬°­¤½¤¦¤À¤Ê¤¢¡£ ¤É¤¦¤¹¤ë¤Î¤¬ÉáÄ̤ʤó¤Ç¤·¤ç¤¦¤«¤Í¡£ \0 ¤Î¤Ê¤¤ 3 ʸ»ú¤ÎÄê¿ô¤Ã¤Æ´Êñ¤ËÀë¸À¤Ç¤­¤Ê¤¤¤Î¤«¤Ê¡£

¤à¤Ä¤ß¤µ¤ó ¤Ë
  const char QCMD[3] = { 'Q', ':', '\r'};
¤È¶µ¤¨¤Æ¤¤¤¿¤À¤¤¤¿¡£¤¦¤Þ¤¤¤³¤ÈÆ°ºî¤·¤Þ¤·¤¿¡£¤¢¤ê¤¬¤È¤¦¤´¤¶¤¤¤Þ¤¹¡£

¤¦¡¼¤ó¡¢¿ôÃÍÆþ¤ê¤Î¥³¥Þ¥ó¥Éʸ»úÎó¤ò strcat() ¤Ç¤Ä¤¯¤ë¤È¤­¤È¤«¤ò¹Í¤¨¤ë¤È¡¢ ·ë¶É sizeof()-1 ¤·¤Æ¤ª¤¯Êý¤¬¸«Ä̤·¤¬¤¤¤¤¤Î¤«¤Ê¤¢¡£¤¦¡¼¤ó¤¦¡¼¤ó¡£

¤¢¡¢
 const char QCMD[] = "Q:\r";
  :
 write(fd, QCMD, strlen(QCMD));
¤¬¤¤¤¤¤«¤Ê¡£¤³¤¦¤·¤È¤¯¤«¡£

¡÷ Q: ¤Î·ë²Ì¤Î parse:

-      900,         0,K,K,R
¤Î¤è¤¦¤Ê·ë²Ì¤¬Ê֤äƤ¯¤ë¤Î¤ò¡¢ ÙÝÇˤê¤Î strtok() ¤Ç ad-hoc ¤Ë¼ÂÁõ¡£¤Ï¤Ã¤­¤ê¸À¤Ã¤Æ¥Ò¥É¥¤Âåʪ¤À¤¬°Ê²¼¤Î¤è¤¦¤Ê´¶¤¸¡£
  res = read(fd,buf,255);
  buf[res] = 0;

  token = strtok(buf, ",");
  if (token != NULL){
    *xpos = atol(token+1);
    if (*token == '-') {*xpos *= -1;}
  } else { rcode = 1;}

  token = strtok(NULL, ","); /* ypos */
  if (token != NULL){
    *ypos = atol(token+1);
    if (*token == '-') {*ypos *= -1;}
  } else { rcode = 1;}

  token = strtok(NULL, ","); /* ack1 */
  switch (*token){
    case 'X':
      *ack1 = ACK1_NG;
      break;
    case 'K':
      *ack1 = ACK1_OK;
      break;
    default:
      *ack1 = ACK_ERROR;
      rcode = 1;
      fprintf(stderr, "(m102_q): parse error for ACK1\n");
  }
   :
°Ê²¼ ack2, ack3 ¤âƱÍÍ¡£

¡÷ ´°À®:

Q: !: C: M: G: R: ¤Î 6 ¥³¥Þ¥ó¥É¤ò¼ÂÁõ¤·¤¿¡£ cvs ¥â¥¸¥å¡¼¥ë m102 ¤È¤·¤Æ import¡£ checkout ¤·¤¿¾ì½ê¤Ï ~/project/stage¡£

¡÷ ¥Þ¥Ë¥å¥¢¥ë:

¤¢¤é¤æ¤ë Á°²ó ¤Î¥³¥Ô¥Ú¤À¤¬¡¢¤Ò¤È¤Þ¤º¤Þ¤È¤á¤¿¡£

#4 [freshmeat] 1/3 ʬ¤Î¿·Ãå¥á¡¼¥ë¤«¤é

#5 [book] ¥¤¥ó¥¿¡¼¥Í¥Ã¥È»þÂå¤Î¿ô³Ø¥·¥ê¡¼¥º

ÇϾ줵¤ó ¤Ë¶µ¤¨¤Æ¤¤¤¿¤À¤¤¤¿¡£³Î¤«¤ËÎɤµ¤½¤¦¤À¡£

ʪÍý¥·¥ê¡¼¥º¤Ï¤Ê¤¤¤Î¤«¤Ê(¾Ð)
¥³¥á¥ó¥È [Á´ÉôÆɤà/Åê¹Æ¤¹¤ë]

2003ǯ01·î05Æü(Æü) [nǯÆüµ­]

#1 Ìȵö¹¹¿·

9:00 º¢²È¤ò½Ð¤ÆÉÜÃæ¤Î»î¸³¾ì¤Þ¤Ç¥Á¥ã¥ê¤Ç¹Ô¤Ã¤Æ¤ß¤¿¤¬¡¢ ¤â¤¦º®¤ßº®¤ß¤ÇÁ´Á³¤À¤á¡£30 ÉäǤ¢¤­¤é¤á¤Æ¤½¤Î¤Þ¤Þµ¢¤Ã¤Æ¤­¤¿¡£ ±ýÉü 20 ʬ¡£ Ê¿Æü¤Ë¹Ô¤³¤¦¤Ã¤È¡£

#2 [book] ¡ØÎÌ»ÒÎϳؤȻä¡ÙÄ«±Ê¿¶°ìϺ ´äÇÈʸ¸Ë

¹Ö±é¡¦¥¨¥Ã¥»¥¤¤Ê¤É¤ò¹¾Âô Íλ᤬¤Þ¤È¤á¤¿¤â¤Î¡£ ·«¤ê¹þ¤ßÍýÏÀ¤ÎÀ®Î©°ÊÁ°¤ò°·¤Ã¤¿¤â¤Î¤¬Â¿¤¤¡£ ¡Ö¸÷»Ò¤ÎºÛȽ¡×ÌÜÅö¤Æ¤ËÇã¤Ã¤¿¤Î¤À¤±¤É¡¢ ¤à¤·¤í¾¤Î¤â¤Î¤¬ÌÌÇò¤«¤Ã¤¿¡£ ÆüìÁêÂÐÏÀ¤ÈÎÌ»ÒÏÀ¤ÎÅý°ì¤ÎºÝ¤Ë¸½¤ì¤ë̵¸Â¤ÎÌäÂê *1 ¤¬ÌÜÁ°¤ÎÌäÂê¤À¤Ã¤¿¤È¤­¤Ë½ñ¤«¤ì¤¿¤â¤Î¤È¤«¡¢ °ìÊý¥Î¡¼¥Ù¥ë¾Þ¼õ¾Þ¸å¤Ë¡¢¤½¤Îº¢¤Î¹Í¤¨¤ÎÍúÎò¤ò¸ì¤Ã¤¿¤â¤Î¤È¤«¡£ °ìÅÙÊá¤Þ¤¨¤¿¥¢¥¤¥Ç¥£¥¢¤Ï¡¢ ¤½¤Î¾ì¤Ç¤ÏľÀÜÀ¸¤­¤Ê¤¯¤Æ¤â¡¢»×¤ï¤Ì¤È¤³¤í¤Ç±þÍѤ¬¸ú¤¯¤â¤Î¤Ê¤Î¤À¡£ ¤¢¤È¡¢¥¨¥Ã¥»¥¤¤Îü¡¹¤Ë¤â´é¤ò½Ð¤¹ÅòÀ¼ù¤Ø¤Î¥³¥ó¥×¥ì¥Ã¥¯¥¹¤¬¡¢ ¸ø³«¸þ¤±¤Ë½ñ¤«¤ì¤¿¤â¤Î¤Ç¤Ï¤Ê¤¤¤À¤í¤¦ ¡ÖÂÚÆÈÆüµ­¡×¤Ç¤Ï¤Ã¤­¤ê¸½¤ì¤Æ¤¤¤ë¤Î¤â¶½Ì£¿¼¤¤¡£ ¤É¤ó¤Ê¥ì¥Ù¥ë¤Ë»ê¤Ã¤Æ¤â¡¢¾Ç¤ê¤äǺ¤ß¤ä¼»ÅʤÈ̵±ï¤Ç¤¢¤ë¿Í¤Ï¤¤¤Ê¤¤¤Î¤À¡¢ ¤¢¤¿¤ê¤Þ¤¨¤À¤±¤É¡£
*1: ¤Þ¤µ¤Ë¤³¤¤¤Ä¤¬·«¤ê¹þ¤ßÍýÏÀ¤Ë¤è¤Ã¤Æ²óÈò¤µ¤ì¤ë¤³¤È¤Ë¤Ê¤ë¤ï¤±¤À¤¬¡£

#3 ¥Þ¥ó¥¬°ú¤­¼è¤ê¼ê

¤Ò¤È¤Þ¤º³ÎÄê¡£¤¢¤È¤ÏÀèÃå½ç¤Ë¤·¤Þ¤¹¡£ ÄùÀڤϤܤ¯¤¬¸ÅËܲ°¤Ë»ý¤Ã¤Æ¤¤¤¯µ¤¤Ë¤Ê¤ë¤Þ¤Ç¡£
¥³¥á¥ó¥È [Á´ÉôÆɤà/Åê¹Æ¤¹¤ë]

2003ǯ01·î06Æü(·î) [nǯÆüµ­]

#1 [paper] arxiv.org cond-mat

Àµ·îʬ¡£

¡÷ Mound formation and coarsening from a nonlinear instability in surface growth:

We study a class of one-dimensional, nonequilibrium, conserved growth equations for both nonconserved and conserved noise statistics using numerical integration. An atomistic version of these growth equations is also studied using stochastic simulation. The models with nonconserved noise statistics are found to exhibit mound formation and power-law coarsening with slope selection for a range of values of the model parameters. Unlike previously proposed models of mound formation, the Ehrlich-Schwoebel step-edge barrier, usually modeled as a linear instability in growth equations, is absent in our models. Mound formation in our models occurs due to a nonlinear instability in which the height (depth) of spontaneously generated pillars (grooves) increases rapidly if the initial height (depth) is sufficiently large. When this instability is controlled by the introduction of an infinite number of higher-order gradient nonlinearities, the system exhibits a first-order dynamical phase transition from a rough self-affine phase to a mounded one as the value of the parameter that measures the effectiveness of control is decreased. We define a new ``order parameter'' that may be used to distinguish between these two phases. In the mounded phase, the system exhibits power-law coarsening of the mounds in which a selected slope is retained at all times. The coarsening exponents for the continuum equation and the discrete model are found to be different. An explanation of this difference is proposed and verified by simulations. In the growth equation with conserved noise, we find the curious result that the kinetically rough and mounded phases are both locally stable in a region of parameter space. In this region, the initial configuration of the system determines its steady-state behavior.

¡÷ Preparation of the Silver Boride: Preliminary Results:

Bulk and thin film specimens of AgB2 were prepared. The bulk pellets were obtained from the powders of the constituents and the films were produced by cosputtering and sequential sputtering. The specimens were annealed and subjected for X-ray and Auger analysis. Preliminary results seems to indicate that AgB2 is an instable phase.

#2 [paper] PRL 89(26-28)

¤Ê¤ó¤Ç 12/30 ¹æ (#27) ¤È 12/31 ¹æ (#28) ¤¬¤¢¤ë¤ó¤ä¤í¤«¡£

¡÷ High Resolution Atomic Force Microscopic Imaging of the Si(111)-(7¡ß7) Surface: Contribution of Short-Range Force to the Images:

Observation of the rest-atom layer of the Si(111)-(7¡ß7) surface is performed by atomic force microscopy. By detecting the force due to the single chemical covalent bond formed between the tip and the sample surface, individual atoms on the layer were clearly resolved. Unprecedented high spatial resolution was achieved by setting the detection force at a small value and by reducing background forces due to the long-range interactions with the small oscillation amplitude of the cantilever and sharp probe tip.
¤¤¤Ä¤¾¤äÆü´©¹©¶È¿·Ê¹¤ËºÜ¤Ã¤Æ¤¿¤ä¤Ä¤«¤Ê¡© force-curve ¤Ë´Ø¤¹¤ëºÙ¤«¤¤µÄÏÀ¡£

¡÷ The Diffusion-Control Limit Revisited:

We consider nonequilibrium adsorption to a freshly formed surface. Owing to the initial lack of equilibrium, the common diffusion-control assumption is inconsistent at small times. A uniform small-time asymptotic approximation is constructed for a Langmuir-type system in terms of the small parameter ¦Å representing the ratio of the respective kinetic and diffusive time scales of the problem. The diffusion-control approximation becomes valid only when t >> ¦Å. The adsorption results are applied to the calculation of the dynamic surface tension.

#3 [paper] APL 81(26-27)

¡÷ Resonance-enhanced laser-induced plasma spectroscopy for sensitive elemental analysis: Elucidation of enhancement mechanisms:

When performing laser-induced plasma spectroscopy for elemental analysis, the analyte signal-to-noise ratio increased from four to over fifty if the plume was reheated by a dye laser pulse tuned to resonant absorption. Time-resolved studies showed that the enhancement was not due to resonance photoionization. Rather, efficient and controlled rekindling of a larger plume volume was the key mechanism. The signal-to-noise ratio further increased to over a hundred if the atmosphere was replaced by a low-pressure heavy inert gas. The ambient gas helped confine and thermally insulate the expanding vapor.

¡÷ Kinetic roughening study of perylene on glass and Au substrates:

We have investigated the growth kinetics of perylene, an organic semiconductor with high carrier mobility, on glass and Au substrates grown side-by-side by vapor deposition using atomic force microscopy. Our results show that kinetic roughening theory can reveal a wealth of information about polycrystalline growth. Higher order height?height correlation functions have been calculated for the perylene thin films on glass and Au. These results show that the height?height correlation function and the Hurst exponent saturate once the nominal perylene film thickness reaches the critical value of 40 ¢ò on glass, and 100 ¢òon Au. After these thicknesses, overhang structures develop and dynamic scaling analysis becomes inappropriate. In addition, we have observed a complex, multiaffine behavior on both substrates evidenced by order dependence of the Hurst exponent. Grain size distribution and shape analysis were also performed on our films.

#4 [labo] 2003ǯ½Õµ¨±þÍÑʪÍý³Ø´Ø·¸Ï¢¹ç¹Ö±é²ñ¤Ë¤ª¤±¤ëÅÅ»ÒÅê¹Æ¤Ë¤Ä¤¤¤Æ

1/13 17:00 ¡ºÀÚ¡£¤Ã¤Æº×Æü¤¸¤ã¤ó¤«¡£

#5 [labo] PMMA ¾øÃå

²¬ÅĤµ¤ó¤Î lecture ¤ò·ó¤Í¤Æ¡£

11:00 ³«»Ï¡¢ ¥Ü¡¼¥È (BM-70) ¤ÎÃæ±ûÉô¤Î 5 ¸Ä¤Î·¦¤ß¤Ë¡¢ ¤½¤ì¤¾¤ì 3 γ¤º¤Ä¤Î PMMA ¥Ú¥ì¥Ã¥È¤òÆþ¤ì¤¿¡£

12:40 ¤«¤é ¿¿¶õ°ú¤­¡£ ´ðÈIJÃÇ® (150¡î)¢ª¼¼²¹ (¿å²¹) ÎäµÑ¤·¤Æ14:40 ¤¯¤é¤¤¤«¤é¾øÃ峫»Ï¡£ Ëì¸ü¥â¥Ë¥¿¤Î¥Ñ¥é¥á¡¼¥¿¤Ï¡¢ ¤È¤·¤¿¡£ »²¹Í¢ª PMMA ¤ÎʪÀ­ ¾ÜºÙ¤Ï¤Á¤ã¤ó¤Èʸ¸¥¤ò¤¢¤¿¤ë¤è¤¦¡¢²¬ÅĤµ¤ó¤ËÍê¤ó¤À¡£

À±Ì¤ó¤Î»þ¤Î¾ò·ï¡¢0.71V 33A ¤òÌܻؤ·¤Æ²ÃÇ®¡£ 0.5V ¤Þ¤Ç¤Ï 0.1V ¤ª¤­¡¢0.65V ¤Þ¤Ç¤Ï 0.05 V ¤ª¤­¡¢ ¤½¤Î¸å 0.71V ¤Þ¤Ç 0.02V ¤ª¤­¤Ë¾å¾º¡£ PMMA ¤Ï 0.6V °Ì¤«¤é¥¸¥å¥¯¥¸¥å¥¯Ë¢Î©¤Á¡¢ °µÎϤϺǽªÄú¤Ë 1¡Á2x10^-2 Pa ¤Þ¤Ç¾å¾º¡£ À®Ëì®ÅÙ¤Ï 2¢ò/s ¤Þ¤Ç¤Ï¾å¤¬¤é¤º¡¢0¡Á1 °Ì¤ò¥Õ¥é¥Õ¥é¡£ Ë¢¤ÎÇËÎö¤Ëȼ¤Ã¤Æ°µÎϾ徺¤äÀ®Ëì®Åپ徺¤¬µ¯¤³¤Ã¤Æ¤¤¤ë¤Ã¤Ý¤¤¡£ ¤È¤ê¤¢¤¨¤ºÅÅ°µ 0.71V ¤Ë fix¡¢ »þ´Ö-ÀÑ»»Ëì¸ü¤Îµ­Ï¿¤ò²¬ÅĤµ¤ó¤Ë¤·¤Æ¤â¤é¤¦¡£

¿ôʬ¸åµÞ¤ËËì¸ü¤¬¾å¾º¤·¤¿¤¬¡¢ ¤³¤ì¤Ï¥Ü¡¼¥È¤Î·¦¤ß¤«¤é PMMA ¤¬¤Ê¤¯¤Ê¤ë»þ¤ËÂбþ¤·¤Æ¤¤¤ë¤è¤¦¤À¡£ ¥â¥Ë¥¿Ì̤ؤΠsticking rate ¤ÎÌäÂê¤â¤¢¤ë¤«¤Ê¤¢¡£

·ë¶É 495¢ò ¤Þ¤Ç¡£15:35¡¢°µÎϤ¬ 1x10^-3 Pa ¤ò²¼¤Þ¤ï¤Ã¤¿¤È¤³¤í¤Ç½ªÎ»¡£

#6 [book] ¥Ò¥«¥ë¤Î¸ë 20

Çã¤Ã¤¿¡£

#7 [URL] ¿§¸«ËܤδÛ

Îɤ¤´¶¤¸¡£

¡÷ ¤¢¤ì?:

¤³¤³¤Î namazu ¤Ç¡Ö¿§¡×¤ò¸¡º÷¤¹¤ë¤È¤ª¤«¤·¤¯¤Ê¤ë¡£¤Ê¤¼¤À¡©
¥³¥á¥ó¥È [Á´ÉôÆɤà/Åê¹Æ¤¹¤ë]

2003ǯ01·î07Æü(²Ð) [nǯÆüµ­]

#1 [LDP] 2002-11-18¡Á2003-01-07 ¤Î updates

¤¢¤¿¤é¤·¤¤¤Û¤¦¤¬¾å¡£

¡÷ new GUIDE:

¡÷ new HOWTOs:

¡÷ updated GUIDE:

¡÷ updated HOWTOs:

* °õ¤Ï´ü´ÖÃæ¤Î extra ¹¹¿·¿ô¡£

¡÷ removed HOWTO:

#2 Ä«¿©

¼·Áð´¡¡£¤·¤«¤·¥â¥Á¤ò¤¤¤ì¤ÆÊ¢°ìÇդˤʤäƤ·¤Þ¤Ã¤¿¡£ ËÜÍè¤Î°ÕÌ£¤ò¸«¼º¤Ã¤Æ¤¤¤ë¡£

#3 [book] ¡ØÇþ²°Ä®Ãë²¼¤¬¤ê¡ÙÆ£Âô¼þÊ¿ ʸ½Õʸ¸Ë

¡Ö±Ý²°Éß¾¬¤Î½Õ·î¡×¤À¤±¤Þ¤ÀÆɤó¤Ç¤Ê¤«¤Ã¤¿¤Î¤òÄ«É÷Ϥ¤ÇÆÉλ¡£ Æ£Âô¼þÊ¿¤Ï¤ä¤Ã¤Ñ¤êÎɤ¤¡£ ¤·¤«¤·Æɤó¤Ç¤Ð¤«¤ê¤ÇÁ´Á³ËܤÎÀ°Íý¤¬ÉÕ¤«¤Ê¤¤¤Ê¡£

#4 Ìȵö¹¹¿·

¹Ô¤Ã¤Æ¤­¤¿¡£Âå½ñ²°¤Ë´ó¤Ã¤Æ *1 8:50 º¢ in¡£º£²ó¤Ï°ãÈ¿¹Ö½¬ *2 ¤À¤Ã¤¿¤Î¤Ç¡¢¤ß¤Ã¤Á¤ê 2h ¤Î¹Ö½¬¤ò¼õ¤±¤Æ¤­¤¿¡£Ìȵö¤â¤é¤Ã¤Æ 11:30 out¡£ °ìÆü¤Ë¾ÃÈñ¤¹¤ë¥¨¥Í¥ë¥®¡¼¤ÎȾʬ¤Ï³Î¼Â¤Ë»ý¤Ã¤Æ¤¤¤«¤ì¤¿¡£

¹ÖµÁÆâÍƤˤĤ¤¤Æ¡£ ¶µ½¬½ê¤Î¶á¤¯¤ËºÇ¶á¤Ç¤­¤¿¡Ö̵˷¡×¤È¤¤¤¦¥é¡¼¥á¥ó²°¤ÎɾȽ¤¬Îɤ¤¤Î¤Ç¡¢ µ¢¤ê¤Ë¹Ô¤Ã¤Æ¤ß¤è¤¦¤È»×¤Ã¤¿¤Î¤À¤¬¡¢º£Æü¤ÏÄêµÙÆü¤Ç¤¢¤Ã¤¿¡£
*1: ¤·¤«¤·ºÇ¶á¤Ï¼Ì¿¿¤¬¤¤¤é¤Ê¤¤¤«¤é¡¢´ó¤ë°ÕÌ£¤ÏÁ´Á³¤Ê¤¤»ö¤¬¸å¤ËȽÌÀ¡£
*2: Êâ¹Ô¼Ô¤Î­¤òƧ¤ó¤Ç 4 ÅÀ¡¢°ì»þÄä»ß°ãÈ¿¤Ç 2 ÅÀ¡£

#5 [labo] »¨ÍÑ

µÈ¾Í»û¤Þ¤Ç½Ð¤Æ¡¢Åìµþ»°É©¤Ç Quesant ¤Ë $294 Á÷¶â¡£ ¼ê¿ôÎÁ 5,500 ±ß¡£¤¦¡¼¤à¡£
¹¾À®¤¯¤óÍѤΠUSB ¥«¡¼¥É¥ê¡¼¥À¤ò LAOX ¤Ç¹ØÆþ¡£
¿¿¶õ¶¨²ñ ¤Ë²ñÈñ \8,000 ʧ¤¤¹þ¤ß¡£¤Û¤ó¤È¤Ï 12 ·îËö¤Þ¤Ç¤Î¤â¤Î¡£

Á÷¶â¤Î·ï¤ò Quesant ¤Ë fax¡£fax\2002\Quesant1.doc¡£

#6 [labo] MgO Æ©²áΨ¥Õ¥£¥Ã¥Æ¥£¥ó¥°

tiger:/usr/local/bin/MgOfit.sh ¤È¤·¤Æ¥¤¥ó¥¹¥È¡¼¥ë¡£ Æ£Ëܤ¯¤ó¤È²¬ÅĤµ¤ó¤Ë»È¤¤Êý¤Î¥ì¥¯¥Á¥ã¡¼¡£ ¹ç¤ï¤Ê¤¤¤È¤­¤Ï¥í¡¼¥ì¥ó¥Ä¥Ñ¥é¥á¡¼¥¿¤Î A ¤ò¤¤¤¸¤Ã¤Æ¤ß¤ë¤ÈÎɤ¤¤è¤¦¤À¡£
¥³¥á¥ó¥È [Á´ÉôÆɤà/Åê¹Æ¤¹¤ë]

2003ǯ01·î08Æü(¿å) [nǯÆüµ­]

#1 [URL] skkime ¤Ë¤Ä¤¤¤Æ

¤½¤í¤½¤íÆþ¤ì¤Æ¤ß¤ë¤«¤Ê¤¢¡£

Linux ¤È skkime ¤Ç¥æ¡¼¥¶¼­½ñ¤ò¶¦Ä̤˻Ȥ¦¤Î¤Ã¤Æ¤É¤¦¤¹¤ë¤ó¤À¤í¡£ ¥×¥í¥Ñ¥Æ¥£¤Ç¡Ö¥µ¡¼¥ÐÄɲáפȤ¤¤¦¤Î¤Ç¤¤¤¤¤Î¤«¤Ê¡© ¤¤¤ä¡¢Î㤨¤Ð debian ¤Î skksearch ¤Ï¥é¡¼¥¸¼­½ñ¤ò¸«¤Æ¤ë¤À¤±¤«¡£ ¥æ¡¼¥¶¼­½ñ¤Ï°ã¤¦¤Ã¤Ý¤¤¤Ê¤¢¡£samba ·Ðͳ¤Ç¶¦Ä̤ˤ·¤¿¤ê¤·¤ÆÂç¾æÉפʤΤÀ¤í¤¦¤«¡£

¥¢¥×¥ê¥±¡¼¥·¥ç¥ó¤Ë¤è¤Ã¤Æ¡¢¤«¤Ê¤¬È¾³Ñ¥«¥¿¥«¥Ê¤Ç¤·¤«ÆþÎϤǤ­¤Ê¤¤¤³¤È¤¬¤¢¤ë¤Ê¡£ ¤µ¤é¤Ë´Á»úÊÑ´¹¤·¤¿¾ì¹ç¤Ë¡¢³ÎÄꤷ¤¿ºÇ¸å¤Îʸ»ú¤¬ ?? ¤Ë¤Ê¤ë»ö¤¬¤¢¤ë¤è¤¦¤À¡£ ¤Õ¡¼¤à¡£ÆþÎÏÁàºî¤½¤Î¤â¤Î¤Ïľ´¶Åª¤Ç¤È¤Æ¤âÎɤ¤¡£ ¤¿¤À¡¢Á´³Ñ¥¹¥Ú¡¼¥¹¤Ï L [space] C-j ¤Ã¤Æ¤¤¤¦¥·¡¼¥±¥ó¥¹¤ÇÆþ¤ì¤ë¤·¤«¤Ê¤¤¤Î¤«¤Ê¡£

#2 [paper] PRB 66(19,20)

¡÷ Effect of growth rate on the spatial distributions of dome-shaped Ge islands on Si(001):

Ge/Si(001) layers are grown by gas-source molecular beam epitaxy at 600 ¡ëC to probe island self-ordering phenomena. We vary the Ge growth rate by a factor of 40, 1.2-47 monolayers (ML) min^-1, and adjust the Ge coverage, 5.9-8.9 ML, to produce films consisting primarily of dome-shaped Ge islands. Measurements of the radial and nearest-neighbor distributions are compared to calculated distributions for random arrangements of circular islands. At low growth rates, island formation is inhibited at small separation. At high growth rates, the angular distributions of nearest-neighbor islands show pronounced island ordering along <100> directions.
¤Þ¤¢¤¢¤ë°ÕÌ£¡¢ÉáÄ̤ηë²Ì¤Ç¤Ï¤¢¤ë¤Î¤À¤±¤ì¤É¡£³¨¤Ï¤È¤Æ¤â´ñÎï¡£ Êý°Ì³ÑʬÉÛ¤ò¤È¤Ã¤Æ¤ë¤Î¤¬¤Á¤ç¤Ã¤È¤ª¤â¤·¤í¤¤¡£

¡÷ Fractal-like model of porous silicon:

A geometrical model of a porous silicon structure is proposed. The resulting size distribution spectra are analyzed by their relation to photoluminescence and Raman scattering. Both experimental data are investigated and compared to those results. The model well describes the presence of a low-energy part of the photoluminescence spectra with wavelength compatible to bulk crystalline silicon. Shapes and positions of Raman and photoluminescence lines are within the frames of model flexibility and indicate similar values of parameters, especially the minimal size of crystallites where Raman scattering and radiative recombination reveal the activity.

¡÷ Fermi surfaces of surface states on Si(111)-Ag, Au:

Metallic surface states on semiconducting substrates provide an opportunity to study low-dimensional electrons decoupled from the bulk. Angle resolved photoemission is used to determine the Fermi surface, group velocity, and effective mass for surface states on Si(111)¢å3¡ß¢å3-Ag, Si(111)¡ß¢å3-¢å3-Au, and Si(111)¢å21¡ß¢å21-(Ag + Au). For Si(111)¢å3¡ß¢å3-Ag the Fermi surface consists of small electron pockets populated by electrons from a few % excess Ag. For Si(111)¢å21¡ß¢å21-(Ag + Au) the pockets increase their size corresponding to a filling by three electrons per unit cell. The ¢å21¡ß¢å21 superlattice leads to an intricate surface umklapp pattern and to minigaps of 110 meV, giving an interaction potential of 55 meV for the ¢å21¡ß¢å21 superlattice
¤³¤ê¤ã¤¹¤²¤¨¡£

¡÷ Surface-induced resistivity of thin metallic films bounded by a rough fractal surface:

We have extended the modified formalism of Sheng, Xing, and Wang [J. Phys.: Condens. Matter 11 L299 (1999)] to allow the calculation of the conductivity of a thin metallic film bounded by a rough fractal surface. We utilized the so-called k-correlation model proposed by Palasantzas and Barnas [Phys. Rev. B 48, 14 472 (1993); 56, 7726 (1997)], to describe the height-height autocorrelation function corresponding to a self-affine roughness. This extension permits the calculation of the conductivity of the film as a function of the r.m.s. roughness amplitude ¦Ä, of the lateral correlation length ¦Î, of the mean free path in the bulk l, and of the roughness exponent H. We found that the degree of surface irregularity, represented by the roughness exponent H characterizing the surface, does influence the conductivity of the film, as first discovered by Palasantzas and Barnas. However, this influence manifests itself for large bulk mean free paths l¡Á1000 nm and for large correlation lengths ¦Î¡Á5 nm, in which case the conductivity of the film for H = 1 exceeds by about 30% the conductivity for H = 0.2, an effect which is smaller than that reported by Palasantzas and Barnas. For correlation lengths ¦Î below 1 nm and mean free paths l¡Á100 nm, the influence of the roughness exponent H on the conductivity is reduced to below 10%, and for smaller mean free paths and correlation lengths the conductivity becomes insensitive to H. We also found that Mathiessen's rule is severily violated in the case of thin metallic films. The resistivity of the film coincides roughly with the surface-limited resistivity only in the case of ultrathin films t<5 nm. For thicker films 100 nm>t>5 nm, the resistivity of the film exceeds by some 20 to 30 % the value dictated by Mathiessen's rule. And conversely, the apparent surface-induced resistivity estimated assuming the validity of Mathiessen's rule, exceeds by nearly one order of magnitude the true surface-induced resistivity, except in the case of ultrathin films t<5 nm.
lanl ¤Ç¸«¤«¤±¤¿µ¤¤â¤·¤¿¤¬...

¡÷ Surface plasmon polaritons on narrow-ridged short-pitch metal gratings:

The reflectivity of short pitch metal gratings consisting of a series of narrow Gaussian ridges in the classical mount has been modeled as a function of frequency and in-plane wave vector (the plane of incidence containing the grating vector) for various ridge heights. Surface plasmon polaritons (SPP's) are found to be excited even in the zero-order region of the spectrum. These may result in strong absorption of radiation polarized with its electric field in the plane of incidence (transverse magnetic). For zero in-plane wave vector the SPP modes consist of a symmetric charge distribution on either side of the grating ridges, a family of these modes existing with different numbers of field maxima per grating period. Because of the charge symmetry these modes may only be coupled to at angles away from normal incidence where strong resonant absorption may then occur. The dispersion of these SPP modes as a function of the in-plane wave vector is found to be complex arising from the formation of very large band gaps due to the harmonic content of the grating profile, the creation of a pseudo high-energy mode, and through strong interactions between different SPP bands.
¤³¤ì¤ÏÍýÏÀ¡£ Î㤨¤Ð angle incident ¤Ê¥¤¥ª¥ó¥¹¥Ñ¥Ã¥¿¤Çºî¤Ã¤¿ ripple ¹½Â¤¤ò¸«¤ì¤¿¤ê¤¹¤ë¤Î¤«¤Ê¤¢¡£

#3 [labo] ¥Ð¥­¥å¡¼¥à¥×¥í¥À¥¯¥Ä

Â綶¤µ¤ó¤ËÅÅÏ䷤ơ¢¥Í¥¸¥Ô¥Ã¥Á¤È¥Ñ¥ë¥¹/³Ñ¤ËÉÕ¤¤¤ÆÌä¹ç¤ï¤»¡£ ¥Ò¡¼¥¿ÍÑ¥Û¥ë¥À ¡¢¥¹¥Æ¡¼¥¸¤Î ¥ê¥ß¥Ã¥È¥»¥ó¥µ ¤Ë¤Ä¤¤¤Æ¤â¤Á¤ç¤Ã¤ÈÏ乡£ ¿å¾½¿¶Æ°»Ò¥Û¥ë¥À¤Ï 1/14 ¤Ë¼è¤ê¤Ë¹Ô¤¯¤«¤¿¤Á¤Ç¡£

#4 [URL] SEMILINKS

ȾƳÂδØÏ¢¥Ý¡¼¥¿¥ë¡£ÊØÍø¤«¤â¡£

#5 [labo] OES ¬Äê·Ï

¥Ð¥­¥å¡¼¥à¥×¥í¥À¥¯¥Ä¤è¤ê»ÅÍͤΠfax¡£ ¤¤¤Þ¥³¥ó¥È¥í¡¼¥é¤ÎÀßÄê¤Ï ¥Ï¡¼¥Õ¥¹¥Æ¥Ã¥×Æ°ºî ¤À¤«¤é¡¢1000 pulse ¤Ç 2mm °ÜÆ°¡¢¤È¡£¤ï¤«¤ê¤ä¤¹¤¤¤Ê¡£ ¥Ð¥Ã¥¯¥é¥Ã¥·¥åʬ¤Ï 1/40 ²óž¤À¤«¤é 25 pulse¡£¤Þ¤¢Í¾Íµ¸«¤Æ 50 pulse¡£

Áë¤Î²£Éý¤¬ 70mm¡¢¥ì¥ó¥º·Ï¤Î¹Ê¤ê¤Ï¡¢ºÇ¾®¤ÇÂиþÊÕ 2mm ¤Î 6 ³Ñ·Á¤À¤«¤é¡¢ 2mm ¤´¤È¤Ë°ÜÆ°¤µ¤»¤ì¤Ð¤¤¤¤¤«¡£

ºî¤ë¤Ù¤­¥×¥í¥°¥é¥à (¤È¤½¤Î̾Á°¤Î¸õÊä) ¤Ï ¤È¤¤¤¦¤È¤³¤í¤«¡£ Ãí°ÕÅÀ¤È¤·¤Æ¤Ï¡¢ ÁêÂаÜÆ°¤¬¥Þ¥¤¥Ê¥¹¤Ë¤Ê¤ë¾ì¹ç¤Ë¤Ï¡¢ ¥Ð¥Ã¥¯¥é¥Ã¥·¥åʬ¤Î 50 ¥Ñ¥ë¥¹Í¾·×¤ËÆ°¤«¤·¡¢ ¥×¥é¥¹Êý¸þ¤Ë 50 ¥Ñ¥ë¥¹Ì᤹¤è¤¦¤Ë¤¹¤ë¤³¤È¡£

#6 [URL] GPTCALL

C¤äFORTRAN¤ÇÆÀ¤¿·×»»·ë²Ì¤ò¥°¥é¥Õ²½¤¹¤ë¤Î¤Ë gnuplot ¤ÏÈó¾ï¤ËÊØÍø¤Ç¤¹¡¥¤³¤Îgnuplot¤ÏÉáÄÌ¡¤Ã¼Ëö¤«¤é¥³¥Þ¥ó¥É¤ÇÁàºî¤·¤Þ¤¹¤¬¡¤¥×¥í¥°¥é¥à¤«¤é¤ÎÁàºî¤â²Äǽ¤Ç¤¹¡¥¤·¤«¤·¡¤¥×¥í¥°¥é¥à¤«¤é¤ÎÁàºî¤Ï¤½¤ì¤Ê¤ê¤ÎÃ챤òɬÍפȤ¹¤ë¤Î¤Ç¡¤½é¿´¼Ô¤Ë¤Ï¿¾¯Æñ¤·¤¤¤«¤â¤·¤ì¤Þ¤»¤ó¡¥
¤½¤³¤Ç C¤Çgnuplot¤ò´Êñ¤ËÀ©¸æ¤Ç¤­¤ë¤è¤¦¤Ë¤¹¤ë¤¿¤á¤Î¥Ñ¥Ã¥±¡¼¥¸¤â¤É¤­¡¤ GPTCALL¤òºî¤Ã¤Æ¤ß¤Þ¤·¤¿¡¥¤³¤Î¥Ñ¥Ã¥±¡¼¥¸¤â¤É¤­¤ò»È¤¨¤Ð½é¿´¼Ô¤Ç¤â´Êñ¤Ë gnuplot¤òC¤«¤éÁàºî¤Ç¤­¤Þ¤¹¡¥
¤Ù¤ó¤ê¤½¤²¡£

¡÷ Controlling GNUPLOT from your C program:

¤Ê¤ë¤Û¤ÉñÆȤʤé popen() »È¤¦¤À¤±¤«¡£

#7 [linux] gengetopt

¥ª¥×¥·¥ç¥ó½èÍý¤Ë·ë¹½ÊØÍø¡£ ¤Þ¤º¥ª¥×¥·¥ç¥óÍѤË
option	"exposure"	e "MOS exposure time" short default="1000" no
option	"gain"		g "amplifier gain (l|m|h)" string default="l" no
option	"pixel"		p "A/D pixcel clock (us)" short default="3" no
option	"output"	o "output file" string no
¤È¤«¤¤¤¦¥Õ¥¡¥¤¥ë (pma.ggo) ¤òºî¤ë¡£ ¥Õ¥©¡¼¥Þ¥Ã¥È¤Ï
option <longname> <shortchar> <description> <type> {default="VALUE"} <required?>
¤È¤¤¤¦¤«¤¿¤Á¡£¾ÜºÙ¤Ï /usr/share/doc/gengetopt/gengetopt.html¡£
% gengetopt < pma.ggo
¤È¤¹¤ë¤È cmdline.h ¤È cmdline.c ¤¬¤Ç¤­¤ë¡£ ¼«Á°¤Î¥×¥í¥°¥é¥à¤Ï
#include <stdio.h>
#include "cmdline.h"
#include "pma.h"

int main(int argc, char **argv){
	struct gengetopt_args_info args_info;
	WORD exposure, pixel;
	BYTE gain;

	if (cmdline_parser (argc, argv, &args_info) != 0) exit(1);

	exposure = args_info.exposure_arg;
	printf("exposure:\t%d\n", exposure);

	pixel = args_info.pixel_arg;
	printf("pixel:\t%d\n", pixel);

	switch (args_info.gain_arg[0]) {
	  case 'l':
	    gain = AMP_GAIN_LOW;
	    break;
	  case 'm':
	    gain = AMP_GAIN_MIDDLE;
	    break;
	  case 'h':
	    gain = AMP_GAIN_HIGH;
	    break;
	  default:
	    fprintf(stderr, "gain should be one of l, m or h\n");
	    exit(1);
	}
	printf("gain:\t%d\n", gain);

	if (args_info.output_given)
		printf("file will be output to %s\n", args_info.output_arg);
	return 0;
}
¤È¤¤¤¦´¶¤¸¤Ç½ñ¤¤¤Æ¡¢
gcc -o pma cmdline.c pma.c
¤È¤¹¤ë¤È½ÐÍè¾å¤¬¤ê¡£
% ./pma
exposure:       1000
pixel:  3
gain:   3
% ./pma -e2000 -p5 -gl --output=FILE
exposure:       2000
pixel:  5
gain:   3
file will be output to FILE
¤È¤¤¤¦´¶¤¸¤Î¼Â¹Ô·ë²Ì¤Ë¤Ê¤ë¡£ Makefile ¤Î¥¨¥ó¥È¥ê¤Ï
pma: pma.c cmdline.c
	gcc -Wall -o $@ $^

cmdline.c: pma.ggo
	gengetopt < $<
¤È¤¤¤¦´¶¤¸¤Ç¡£

¡÷ --unamed-opts:

gengetopt ¼Â¹Ô»þ¤Ë --unamed-opts ¤È¤¤¤¦¥ª¥×¥·¥ç¥ó¤ò¤Ä¤±¤ë¤È¡¢ ¥Ñ¥é¥á¡¼¥¿°Ê³°¤Î°ú¿ô¤â½èÍý¤Ç¤­¤ë¡£ ¤È¤Ê¤ë¡£

#8 °ìã·

²ÏÅÄÀèÀ¸¤ÎÂà´±µ­Ç°¥Ñ¡¼¥Æ¥£¡¼ ¤Î¤È¤­¤Ë¡¢ÀèÀ¸¤«¤é¤ªÅÚ»º¤È¤·¤Æ»²²Ã¼Ô¤ËÇÛ¤é¤ì¤¿¤ª¼ò¡£ ¤À¤¤¤Ö¤¿¤Ã¤Æ¤·¤Þ¤Ã¤¿¤¬°û¤ó¤Ç¤ß¤¿¡£¤¦¡¼¤ó¡¢¤¹¤´¤¯ÈþÌ£¤·¤¤¡£ ¼«Ê¬¤ÏÎó¤ÎºÇ¸å¤ÎÊý¤Ç¡¢Í¾¤ê¤¬½Ð¤½¤¦¤À¤Ã¤¿¤Î¤Ç¡¢ ²ÏÅÄÀèÀ¸¤Ë¡Ö¤Ê¤ó¤À¤Ã¤¿¤éÆó¤Ä»ý¤Ã¤Æ¤­¤Ê¤è¡×¤È¸À¤ï¤ì¤¿¤Î¤À¤¬¡¢ ±óθ¤·¤Æ£±Ëܤ·¤«¤â¤é¤ï¤Ê¤«¤Ã¤¿¤Î¤Ç¤¢¤Ã¤¿¡£ ¤â¤Ã¤¿¤¤¤Ê¤¤¤³¤È¤ò¤·¤¿¡£

¤Á¤Ê¤ß¤Ë ´ä¼¾ú¤ ¤È¤¤¤¦´ôÉì¤Î¢¸µ¤Î¤ª¼ò¤é¤·¤¤¡£
¥³¥á¥ó¥È [Á´ÉôÆɤà/Åê¹Æ¤¹¤ë]

2003ǯ01·î09Æü(ÌÚ) [nǯÆüµ­]

#1 [labo] OES ¬Äê·Ï

¤³¤Î¤Ø¤ó ¤Î¥³¥Þ¥ó¥Éºî¤ê¡£

¡÷ pmashot:

´°À®¡£mktemp() ¤ò»È¤Ã¤Æ¤ë¤Î¤Ç¡¢¤¤¤Ä¤«Ä¾¤½¤¦¡£

¡÷ ¥¹¥Æ¡¼¥¸°ÜÆ°·Ï¥³¥Þ¥ó¥É:

¤òºîÀ®¡£¥Õ¥¡¥¤¥ë̾ 3 ʸ»ú¤á¤ÇÊѹ¹¤·¤ÆÊä´°¤ò¿¾¯³Ú¤Ë¤·¤¿¡£

¡÷ pmameas:

´°À®¡£C:10 ¤·¤¿¾õÂÖ¤«¤é¤À¤ÈÆ°¤«¤Ê¤«¤Ã¤¿¤Î¤¬¤Á¤ÈÌÕÅÀ¡£ ¤µ¤Æ¡¢¤¦¤Þ¤¯Â¬¤ì¤ë¤È¤¤¤¤¤¬¡£

¡÷ ¬Äê:

ÅÄÃ椯¤ó¡¢É¥ÅĤ¯¤ó¤Ë¶¨ÎϤ·¤Æ¤â¤é¤¤¡¢ Ar 10 Pa (Shultz gauge ɽ¼¨ÃÍ) 50W ¤Ç¬¤Ã¤Æ¤ß¤¿¡£ ¤È¤ê¤¢¤¨¤º X ¼´¤Î¸¶ÅÀ¤Ï¸«¤¿Ìܤǡ£ºÇ¸å¤Ï zero ¤ËÌᤷ¤Æ»ß¤á¤¿¡£ ½ÄÊý¸þ¤ò ¡Þ19mm ¤Û¤É¡¢5mm ´Ö³Ö¤Ç°ÜÆ°¡£ gain ¤Ï high¡¢exposure ¤Ï default ¤Î 1000ms ¤Ç¡¢ ¤Þ¤¢ 324, 510 ¤ÎÃͤϽФƤ¤¤ë¤è¤¦¤À¡£ ¾¤Î¥Ô¡¼¥¯¤¬¸«¤¿¤¤¤È¤­¤Ï¡¢¤â¤¦¤Á¤ç¤Ã¤È¹Ê¤ê¤ò³«¤±¤ë¤« exposure ¤ò¿­¤Ð¤¹¤«¤·¤Ê¤¤¤È¤À¤á¤«¤Ê¡£ ²òÀϤϸå¤Û¤É¡£

¡÷ import:

cvs -d /home/cvsroot ¤Ë sroes ¤È¤¤¤¦¥â¥¸¥å¡¼¥ë̾¤Ç import ¤·¤¿¡£

#2 [labo] rwiki ʸ»ú²½¤±

ASCII ʸ»ú¤ÈÁ´³Ñʸ»ú¤¬º®¤¶¤Ã¤Æ¤ë¤È¥À¥á¤Ã¤Ý¤¤¤Ç¤¹¤Í¡£ »þ´Ö¤¬¤Ç¤­¤¿¤é 1.2.4 ¤Ë¾å¤²¤Æ¤ß¤Þ¤¹¡£

#3 [URL] ½é¿´¼Ô¤Î¤¿¤á¤Î¥·¥ê¥³¥óñ·ë¾½À¶¾ôɽÌ̺îÀ½µ»½Ñ

ÄÌÅŲÃÇ®Êý¼°¤Ë¤è¤ë¥·¥ê¥³¥óñ·ë¾½À¶¾ôɽÌ̺îÀ®µ»½Ñ¤ò¾Ò²ð¤·¤Þ¤¹¡£ÆɼԤȤ·¤Æ¤Ï¡¢¤ä¤ëµ¤¤È»þ´Ö¤Ï½½Ê¬¤¢¤ë¤±¤ì¤É¤â¡¢·Ð¸³¤È¸¦µæÈñ¤Ï˳¤·¤¤¼ã¼ê¸¦µæ¼Ô¤òÂоݤȤ·¤Æ¤¤¤Þ¤¹¡£¤Þ¤¿¡¢¤³¤³¤Ë½Ò¤Ù¤ë¥·¥ê¥³¥óÀ¶¾ôɽÌ̤ȤÏĶ¹â¿¿¶õ¡Ê¡Á£±£°-10Torr¡ËÃæ¤ÇºîÀ®¤¹¤ëÉÔ½ãʪǻÅÙ£±¡ó°Ê²¼ÄøÅÙ¤ÎɽÌ̤Ǥ¹¡£ÈùÎ̤ÎÉÔ½ãʪ¤Ï±Æ¶Á¤·¤Ê¤¤¸¦µæ¤Ê¤é½½Ê¬ÄÌÍѤ·¤Þ¤¹¡£
¤¹¤Ð¤é¤·¤¤¡£

#4 [dept] Âç³Ø±¡ÆÃÊֵ̹Á (º´¡¹ÌÚÀèÀ¸)

¥Ê¥Î¥Æ¥¯³µÏÀ¡£¥È¥Ã¥×¥À¥¦¥ó vs ¥Ü¥È¥à¥¢¥Ã¥×¤È¤¤¤¦´ÑÅÀ¤ÇÀ°Íý¤µ¤ì¡¢ ¤È¤Æ¤â¤ï¤«¤ê¤ä¤¹¤«¤Ã¤¿¡£

¡÷ ¥È¥Ã¥×¥À¥¦¥ó:

ÊÌ̾¡Ö¥Õ¥¡¥¤¥ó¥Þ¥ó¤Î¥Ê¥Î¥Æ¥¯¡×¡£ ´ðËܤϥ꥽¥°¥é¥Õ¥£¡£ ¸½¾õ¤ÎÌÜɸ¤Ï 1Tbit/inch^2 ¤È¤¤¤¦¤È¤³¤í¤À¤È¤«¡£ ¸Â³¦¤Ï 10nm Éý¤¯¤é¤¤¤Þ¤Ç¡¢Åþã¤Ï 2014 ǯ¤¯¤é¤¤¡© ÁáÂçÂçÇñÀèÀ¸¤Î¤È¤³¤Ç8nm ¥Ô¥Ã¥È¡¢ ¥Ä¥¤¥ó¥×¥í¡¼¥Ö¡¢¥Ê¥Î¿¶Æ°»Ò¤ÎÆ°²è¤Ê¤É¡£

¡÷ intermission:

¡Ö¥ß¥¯¥í¤Î·è»à·÷¡×¤ò¥Þ¥¯¥é¤Ë¡¢ drag delivery system ¤Î¤ªÏᣠ4nm °Ê²¼¤À¤È¿Õ¡¤Ç¼Î¤Æ¤é¤ì¡¢400nm °Ê¾å¤À¤ÈÌȱַϤ˹¶·â¤µ¤ì¤ë¤Î¤À¤È¤«¡£ ºÙ˦ÆâÉô¤Ç¤Î¾õ¶·Ç§¼±¤Ë¤è¤Ã¤ÆÌôÍý¸ú²Ì¤òȯ¸½¤µ¤»¤ë¡¢ D-RECS ¤È¤¤¤¦¼êË¡¤¬¤¢¤Ã¤¿¤ê¤¹¤ë¤é¤·¤¤¡£

¡÷ ¥Ü¥È¥à¥¢¥Ã¥×:

ÊÌ̾¡Ö¥É¥ì¥¯¥¹¥é¡¼¤Î¥Ê¥Î¥Æ¥¯¡×(c.f.¡ØÁϤ¤¹¤ëµ¡³£¡Ù1986)¡£ ¥¢¥»¥ó¥Ö¥é+¥ì¥×¥ê¥±¡¼¥¿¤Ë¤è¤ëµ¡Ç½È¯¸½¡£ ¥¢¥×¥í¡¼¥Á¤Ï 3 ¤Ä¡¢
  1. À¸ÂΤΥᥫ¥Ë¥º¥à¤ò¸¦µæ¤¹¤ë¤â¤Î¢ª¥Ð¥¤¥ª¥â¡¼¥¿¡¢Æä˲óž¥â¡¼¥¿ (Walker 1994 Novel Prize)¡£ATP ¥µ¥¤¥¯¥ë¤ò»È¤Ã¤¿ F1 ¥â¡¼¥¿¡¢H+ driven ¤Ê F0 ¥â¡¼¥¿¤Ê¤É¡£
  2. Bulk ¤äɽÌ̤ÎʪÀ­¡¢¼«¸ÊÁÈ¿¥²½¤òÍøÍѤ¹¤ë¤â¤Î¢ª¥Õ¥¿¥í¥·¥¢¥Ë¥ó¤Î°ì¼¡¸µº¿¤ò»È¤Ã¤¿ÇÛÀþ¤Ê¤É¡£
  3. SPM µ»½Ñ¤ò±þÍѤ·¤ÆŸ³«¤¹¤ë¤â¤Î¢ªSTM ¤Ë¤è¤ë¸¶»Ò°ÜÆ°¡¢Xe ¤ò²ðºß¤µ¤»¤¿¥¹¥¤¥Ã¥Á¥ó¥°¡¢AFM ¤Ç¤â Si/Ag ­õ3x­õ3 ¤Ë¤ª¤¤¤Æ¡¢Ag ¥È¥é¥¤¥Þ¡¼¤Î¿­¤Ó½Ì¤ß¤Ë¤è¤ë¥¹¥¤¥Ã¥Á¥ó¥°¤Î¤è¤¦¤Ê¸½¾Ý¤¬¸«¤é¤ì¤ë¤é¤·¤¤¡£¤¢¤È¤Ï¥°¥é¥Õ¥¡¥¤¥È¾åË໤ÎϤΥ¢¥ì :-) ¤È¤«¡£

#5 [freshmeat] 1/8 ʬ¤Î¿·Ãå¥á¡¼¥ë¤«¤é

#6 ºÇ¶á¤ÎÀ¸³è»þ´ÖÂÓ

Àµ·î¤Î।줿À¸³è¤Î¸å°ä¾É¤Ç¡¢¤À¤¤¤¿¤¤ 4:00AM ¤ËÌܤ¬³Ð¤á¤ë¡£ 18:00 º¢¤Ë¤Ê¤ë¤È̲¤¯¤Æ¤â¤¦¤À¤á¡£

#7 [labo] ºÇ¶á¤Î¸¦µæ¼¼

¤À¤ó¤À¤ó¥Ô¥Ã¥Á¤¬¾å¤¬¤Ã¤Æ¤­¤¿¤è¤¦¤À¡£

#8 [book] ¥·¥§¥ê¥Õ¥¹¥¿¡¼¥º MS04

¹ØÆþ¡¢ÆÉλ¡£
¥³¥á¥ó¥È [Á´ÉôÆɤà/Åê¹Æ¤¹¤ë]

2003ǯ01·î10Æü(¶â) [nǯÆüµ­]

#1 ¤³¤Î¥µ¡¼¥Ð

Ä«¤Î cron ¤Î restart »þ¤ËÍî¤Á¤Æ¤¤¤¿¤è¤¦¤À¡£ Íýͳ¤ÏºòÆü rwiki ´Ø·¸¤ÎÄ´ºº»þ¤Ë mod_encoding ¥â¥¸¥å¡¼¥ë¤òÈ´¤¤¤¿¤«¤é¡£

#2 [labo] AFM ÍøÍѹֽ¬²ñ

13:00-14:30¡¢ »²²Ã¼Ô: Æ£ËÜ¡¦Èøºê¡¦º´Æ£¡£ ÀΤΠQ ¥×¥í¡¼¥Ö¤Ï¡¢¤â¤¦»È¤ï¤Ê¤¤¤Û¤¦¤¬Îɤµ¤½¤¦¤À¤Ê...

#3 [labo] rwiki

1.2.4 ¤ËÆþ´¹¤¨¤¿¡£libdevel-logger-ruby.deb ¤Ï sid ¤«¤é¤È¤Ã¤Æ¤­¤¿¡£ ñÆȤǥ¤¥ó¥¹¥È¡¼¥ë¤Ç¤­¤¿¤Î¤ÇÌäÂê¤Ê¤«¤í¤¦¡£ ʸ»ú²½¤±¤ÎÌäÂê¤â²ò¾Ã¤·¤¿ÌÏÍÍ¡£Îɤ«¤Ã¤¿Îɤ«¤Ã¤¿¡£

pagerank ¤È¤« orphan ¤Ï¡¢Ê̤˥⥸¥å¡¼¥ëÆþ¤ì¤ëɬÍפ¬¤¢¤ë¤Î¤«¤·¤é¡£ ¤¢¤¢¡¢¥Ú¡¼¥¸¤È¤·¤Æ¸ºß¤·¤Æ¤ë¤Î¤«¡£¥³¥Ô¡¼¤¹¤ë¤À¤±¤Ç¤¹¤Ê¡£

#4 [labo] OES ·ë²Ì²òÀÏ

²áµî¤Î¥Ä¡¼¥ë ¤ò°ú¤ÃÄ¥¤ê½Ð¤·¤Ä¤Ä¡£ ¤ÎÆóÅÀʬ¤Î½¤Àµ¤ò¤»¤ó¤È¤¢¤«¤ó¡£

¤³¤Î 2 ÅÀ¤Ï perl ¤Ç½èÍý¤Ç¤­¤ëÌܽ褬¤Ä¤¤¤¿¤¬¡¢ ·ë¶É³Ú¤Ëºî¶È¤ò¤¹¤ë¤Ë¤Ï oespeaks ¤È oesfit ¤ÎÆ°ºî¤ò´Þ¤á¤Æ 1 ¤Ä¤Î¥¹¥¯¥ê¥×¥È¤Ë¤Þ¤È¤á¤ë¤·¤«¤Ê¤¤¤Î¤«¤Ê¤¢¡£¤¦¡¼¤à¤à¤à¡£

¤·¤«¤·°ÅÅÅή¤Î scatter ¤¬·ë¹½Â礭¤¤¡£

#5 Æü¹â²°

¥µ¥ó¥í¡¼¥É¤Ë¤¢¤ë¡¢¤â¤È¥é¡¼¥á¥ó´Û¤À¤Ã¤¿¤È¤³¤í¡£ÉÔÌ£¤¤¡£ Íê¤ó¤À¤Î¤ÏÌ£Á¹¥é¡¼¥á¥ó 390 ±ß+ñ­»Ò 150 ±ß¡£ ¤Þ¤º½Ð¤Æ¤­¤¿¿å¤¬¥«¥ë¥­½­¤¤¡£ ¥é¡¼¥á¥ó¤ÏÌͤËÌ£¤â¿©´¶¤â¤Ê¤¯¡¢ ¥¹¡¼¥×¤â±ö¥é¡¼¥á¥ó¤Î¥¹¡¼¥×¤Ë¿½¤·ÌõÄøÅÙ¤ËÌ£Á¹¤òÍϤ«¤·¤Þ¤·¤¿¡¢¤È¤¤¤¦¤è¤¦¤Ê¤â¤Î¡£ ¥µ¥Ã¥Ý¥í°ìÈÖ¤ÎÊý¤¬ 30 Çܤ¯¤é¤¤¥Þ¥·¡£ ñ­»Ò¤âÃæ¿È¥¹¥«¥¹¥«¡¢¥´¥ÞÌý¤Î½­¤¤¤¬ÊѤËÉ¡¤ËÉÕ¤¤¤¿¡£ ¿ÍÀ¸¤ÎÍ­¸Â²ó¤Î¿©»ö¤ò°ì²óʬ̵Â̤ˤ·¤¿¡£Ä˺¨¡£
¥³¥á¥ó¥È [Á´ÉôÆɤà/Åê¹Æ¤¹¤ë]

°Ê¾å¡¢10 Æüʬ¤Ç¤¹¡£
¥¿¥¤¥È¥ë°ìÍ÷
¥«¥Æ¥´¥êʬÎà
book
dept
issp
labo
paper
snap
stock
vsj
Powered by hns-2.19.5, HyperNikkiSystem Project

ÃæÌîÉðͺ (NAKANO, Takeo) <nakano@st.seikei.ac.jp> Since 1999-10-07
RSS feed, ¹¹¿·»þ¹ï, LIRS ¥¨¥ó¥È¥ê, ¥¢¥¯¥»¥¹À©¸æ (²òÀâ)

ÃæÌî¤Î¥Û¡¼¥à¥Ú¡¼¥¸¤Ø